3월 29일 (금) 오후 4:05
랩터 인터내셔널에 오신걸 환영 합니다
>

logo

  • head
  • news
  • product
  • mobile
  • benchmark
  • analysis
  • computing
  • multimedia

"SAN"은 "Storage Area Network"...
웹 애플리케이션에서의 버퍼 오버...
XSS(크로스 사이트 스크립팅) 취...


Western Digital WD Black and SanDisk Extreme PRO Specifications
Capacity250 GB500 GB1 TB
WD Black ModelWDS250G2X0CWDS500G2X0CWDS100T2X0C
SanDisk Extreme PRO Model-SDSSDXPM2-500GSDSSDXPM2-1T00
Form FactorM.2 2280 Single-Sided
InterfaceNVMe PCIe 3 x4
ControllerWestern Digital in-house
NANDSanDisk 64-layer 3D TLC
DRAMSK Hynix DDR4-2400
Sequential Read3000 MB/s3400 MB/s3400 MB/s
Sequential Write1600 MB/s2500 MB/s2800 MB/s
4KB Random Read220k IOPS410k IOPS500k IOPS
4KB Random Write170k IOPS330k IOPS400k IOPS
PowerPeak (10µs)9.24 W9.24 W9.24 W
PS3 Idle70 mW70 mW100 mW
PS4 Idle2.5 mW2.5 mW2.5 mW
Write Endurance200 TBW
0.4 DWPD
300 TBW
0.3 DWPD
600 TBW
0.3 DWPD
Warranty5 years
MSRP$119.99
(48¢/GB)
$229.99
(46¢/GB)
$449.99
(45¢/GB)


WD 블랙 SSD 라인업 : WDS250G2X0C(250GB) / WDS500G2X0C(500G) / WDS100T2X0C(1TB)

폼 팩터 : M.2 2280 싱글 사이드

인터페이스 : NVMe PCIe 3 x4

컨트롤러 : Western Digital in-house

낸드 플래시 : 샌디스크 64층 3D TLC

DRAM : SK 하이닉스 DDR4-2400

시퀀셜 읽기 : 3000MB/s ~ 3400MB/s

시퀀셜 쓰기 : 1600MB/s ~ 2800MB/s

랜덤 읽기 : 220k IOPS ~ 500k IOPS

랜덤 쓰기 : 170k IOPS ~ 400k IOPS

워런티 : 5년

가격 : $119.99 / $229.99 / $449.99


IMGP1081_575px.jpg



[ 테스트 시스템 ]


AnandTech 2017/2018 Consumer SSD Testbed
CPUIntel Xeon E3 1240 v5
MotherboardASRock Fatal1ty E3V5 Performance Gaming/OC
ChipsetIntel C232
Memory4x 8GB G.SKILL Ripjaws DDR4-2400 CL15
GraphicsAMD Radeon HD 5450, 1920x1200@60Hz
SoftwareWindows 10 x64, version 1709
Linux kernel version 4.14, fio version 3.1


AnandTech Storage Bench - The Destroyer

The Destroyer is an extremely long test replicating the access patterns of very IO-intensive desktop usage. A detailed breakdown can be found in this article. Like real-world usage, the drives do get the occasional break that allows for some background garbage collection and flushing caches, but those idle times are limited to 25ms so that it doesn't take all week to run the test. These AnandTech Storage Bench (ATSB) tests do not involve running the actual applications that generated the workloads, so the scores are relatively insensitive to changes in CPU performance and RAM from our new testbed, but the jump to a newer version of Windows and the newer storage drivers can have an impact.

We quantify performance on this test by reporting the drive's average data throughput, the average latency of the I/O operations, and the total energy used by the drive over the course of the test.

ATSB - The Destroyer (Data Rate)

The average data rate from the new WD Black on The Destroyer is almost as fast as Samsung's TLC-based 960 EVO and their newer PM981 OEM drive. Where the original WD Black NVMe SSD was clearly a low-end NVMe drive and no faster than SATA SSDs on this test, the new WD Black is competitive at the high end.

ATSB - The Destroyer (Average Latency)ATSB - The Destroyer (99th Percentile Latency)

The average latencies from the WD Black are competitive with Samsung's TLC drives, and the 99th percentile latencies are the fastest we've seen from any flash-based SSD for this capacity class.

ATSB - The Destroyer (Average Read Latency)ATSB - The Destroyer (Average Write Latency)

The average read latencies from the WD Black on The Destroyer are as good as any flash-based SSD we've tested. Average write latencies are great but Samsung's top drives are still clearly faster.

ATSB - The Destroyer (99th Percentile Read Latency)ATSB - The Destroyer (99th Percentile Write Latency)

The WD Black has the best 99th percentile read latency scores aside from Intel's Optane SSD 900P, but the 99th percentile write latency scores are only in the second tier of drives.

ATSB - The Destroyer (Power)

The load power consumption of the new WD Black is a huge improvement over the previous SSD to bear this name. The new model uses less than half as much energy over the course of The Destroyer, putting it in first place slightly ahead of the Toshiba XG5.


AnandTech Storage Bench - Heavy

Our Heavy storage benchmark is proportionally more write-heavy than The Destroyer, but much shorter overall. The total writes in the Heavy test aren't enough to fill the drive, so performance never drops down to steady state. This test is far more representative of a power user's day to day usage, and is heavily influenced by the drive's peak performance. The Heavy workload test details can be found here. This test is run twice, once on a freshly erased drive and once after filling the drive with sequential writes.

ATSB - Heavy (Data Rate)

The average data rates from the new WD Black SSD on the Heavy test are essentially tied with the Samsung 960 EVO. Premium drives like the Samsung 960 PRO and Intel Optane SSD 900P are faster, but the WD Black and SanDisk Extreme PRO NVMe SSDs still clearly belong in the high-end market segment.

ATSB - Heavy (Average Latency)ATSB - Heavy (99th Percentile Latency)

The average and 99th percentile latency scores from the WD Black on the Heavy test are among the best from any flash-based SSD. The 99th percentile write latency of the WD Black shows much less performance loss from a full drive than the Toshiba XG5 or Samsung 960 EVO.

ATSB - Heavy (Average Read Latency)ATSB - Heavy (Average Write Latency)

The WD Black is one of the top drives for average read latency, and the average write latency is only slightly higher than that of the Samsung 960 EVO. The performance hit when the test is run on a full drive is no worse than what most MLC-based drives suffer.

ATSB - Heavy (99th Percentile Read Latency)ATSB - Heavy (99th Percentile Write Latency)

Western Digital's new controller architecture provides great QoS for read operations, with 99th percentile latencies lower than any of the competing flash-based SSDs. The 99th percentile write latencies are top notch but don't stand out from the crowd.

ATSB - Heavy (Power)

The WD Black and SanDisk Extreme PRO join the Toshiba XG5 as some of the few NVMe SSDs that offer load power efficiency comparable to good SATA SSDs. The total energy used during the heavy test is only slightly higher than the Crucial MX500 and Western Digital's own SATA drives with the same 64L 3D TLC NAND.


AnandTech Storage Bench - Light

Our Light storage test has relatively more sequential accesses and lower queue depths than The Destroyer or the Heavy test, and it's by far the shortest test overall. It's based largely on applications that aren't highly dependent on storage performance, so this is a test more of application launch times and file load times. This test can be seen as the sum of all the little delays in daily usage, but with the idle times trimmed to 25ms it takes less than half an hour to run. Details of the Light test can be found here. As with the ATSB Heavy test, this test is run with the drive both freshly erased and empty, and after filling the drive with sequential writes.

ATSB - Light (Data Rate)

The WD Black's average data rates on the Light test are slightly slower than the Samsung 960 EVO when the test is run on an empty drive, and a bit faster when the drive is full. The Samsung PM981 is the only drive that has a clear lead in both cases, and even then it isn't a very big margin. The worst-case performance here from the new WD Black is substantially faster than the best-case from last year's WD Black.

ATSB - Light (Average Latency)ATSB - Light (99th Percentile Latency)

The average latencies from the WD Black during the Light test are as low as any SSD offers. The 99th percentile latencies are not quite as fast as Samsung's best drives offer, except that the full-drive performance is better than the 960 EVO.

ATSB - Light (Average Read Latency)ATSB - Light (Average Write Latency)

There are quite a few SSDs with average read latency scores that are close to or slightly better than the WD Black, and even the low-end NVMe SSDs keep the average read latency down to a fraction of a millisecond on the Light test. The average write latencies from the WD Black are essentially tied for first place with Samsung's drives.

ATSB - Light (99th Percentile Read Latency)ATSB - Light (99th Percentile Write Latency)The WD Black offers great 99th percentile write latency on the Light test as its SLC cache never fills. The 99th percentile read latency doesn't rank quite as high, but the full-drive score is very good.

ATSB - Light (Power)

As with the Heavy test, the only NVMe SSD we've tested that can match the WD Black's power efficiency is the Toshiba XG5. These drives get the job done much faster than a SATA drive without using any more energy.


Random Read Performance

Our first test of random read performance uses very short bursts of operations issued one at a time with no queuing. The drives are given enough idle time between bursts to yield an overall duty cycle of 20%, so thermal throttling is impossible. Each burst consists of a total of 32MB of 4kB random reads, from a 16GB span of the disk. The total data read is 1GB.

Burst 4kB Random Read (Queue Depth 1)

The burst random read performance of the WD Black isn't exceptional, but it is an improvement over the original WD Black SSD and is only slightly behind the Samsung 960 EVO.

Our sustained random read performance is similar to the random read test from our 2015 test suite: queue depths from 1 to 32 are tested, and the average performance and power efficiency across QD1, QD2 and QD4 are reported as the primary scores. Each queue depth is tested for one minute or 32GB of data transferred, whichever is shorter. After each queue depth is tested, the drive is given up to one minute to cool off so that the higher queue depths are unlikely to be affected by accumulated heat build-up. The individual read operations are again 4kB, and cover a 64GB span of the drive.

Sustained 4kB Random Read

The sustained random read performance of the WD Black is a small improvement over last year's model, but not quite enough to catch up to Samsung. In addition, the recent Intel 760p also comes out slightly ahead of the WD Black.

Sustained 4kB Random Read (Power Efficiency)
Power Efficiency in MB/s/WAverage Power in W

The power efficiency of the WD Black during random reads is better than any other TLC drive as it barely draws any more power than a SATA drive during this test.


Random Write Performance

Our test of random write burst performance is structured similarly to the random read burst test, but each burst is only 4MB and the total test length is 128MB. The 4kB random write operations are distributed over a 16GB span of the drive, and the operations are issued one at a time with no queuing.

Burst 4kB Random Write (Queue Depth 1)

Our WD Black sample oddly returned a substantially better burst random write score than the SanDisk Extreme PRO that should be identical. Since both scores are at the top of the chart, unusually high variance doesn't actually present a problem.

As with the sustained random read test, our sustained 4kB random write test runs for up to one minute or 32GB per queue depth, covering a 64GB span of the drive and giving the drive up to 1 minute of idle time between queue depths to allow for write caches to be flushed and for the drive to cool down.

Sustained 4kB Random Write

The new WD Black offers top-tier performance on the sustained random write test, well ahead of Samsung's current retail offerings and just barely behind the PM981 OEM drive that Samsung's next generation retail drives will be based upon. Last year's WD Black was just barely faster than SATA drives.

Sustained 4kB Random Write (Power Efficiency)
Power Efficiency in MB/s/WAverage Power in W

The overhaul of the NAND and the controller has taken the WD Black from the bottom of the efficiency chart with last year's model to the very top, where it has a small lead over the Toshiba XG5 and Samsung 960 PRO.


Sequential Read Performance

Our first test of sequential read performance uses short bursts of 128MB, issued as 128kB operations with no queuing. The test averages performance across eight bursts for a total of 1GB of data transferred from a drive containing 16GB of data. Between each burst the drive is given enough idle time to keep the overall duty cycle at 20%.

Burst 128kB Sequential Read (Queue Depth 1)

The burst sequential read performance of the WD Black is several times higher than last year's model, but doesn't come close to setting any records.

Our test of sustained sequential reads uses queue depths from 1 to 32, with the performance and power scores computed as the average of QD1, QD2 and QD4. Each queue depth is tested for up to one minute or 32GB transferred, from a drive containing 64GB of data.

Sustained 128kB Sequential Read

On the sustained sequential read test, the Samsung NVMe drives have a clear lead over the WD Black, which is tied with Toshiba's drives.

Sustained 128kB Sequential Read (Power Efficiency)
Power Efficiency in MB/s/WAverage Power in W

In terms of power efficiency for sequential reads, the WD Black is much closer to the top drives, with the exception of the Samsung 960 PRO.


Sequential Write Performance

Our test of sequential write burst performance is structured identically to the sequential read burst performance test save for the direction of the data transfer. Each burst writes 128MB as 128kB operations issued at QD1, for a total of 1GB of data written to a drive containing 16GB of data.

Burst 128kB Sequential Write (Queue Depth 1)

As with the burst random write test, our two samples show surprising differences in burst sequential write speeds. The difference amounts to the WD Black/SanDisk Extreme PRO either being tied for second place with the Samsung 960 EVO, or almost tied with the PM981 that the 960 EVO's replacement will be based on.

Our test of sustained sequential writes is structured identically to our sustained sequential read test, save for the direction of the data transfers. Queue depths range from 1 to 32 and each queue depth is tested for up to one minute or 32GB, followed by up to one minute of idle time for the drive to cool off and perform garbage collection. The test is confined to a 64GB span of the drive.

Sustained 128kB Sequential Write

The sustained sequential write performance of the WD Black is not quite the best, but it is well ahead of everything except the best drives from Samsung and Intel. The WD Black is almost twice as fast as the Toshiba XG5 that uses essentially the same flash.

Sustained 128kB Sequential Write (Power Efficiency)
Power Efficiency in MB/s/WAverage Power in W

Despite not having the best performance on the sequential write test, the WD Black is the clear winner on the efficiency metric. With power draw of just over 4W it isn't close to being the least power-hungry drive, but it get so much done on that budget that the efficiency score beats everything else.


Mixed Random Performance

Our test of mixed random reads and writes covers mixes varying from pure reads to pure writes at 10% increments. Each mix is tested for up to 1 minute or 32GB of data transferred. The test is conducted with a queue depth of 4, and is limited to a 64GB span of the drive. In between each mix, the drive is given idle time of up to one minute so that the overall duty cycle is 50%.

Mixed 4kB Random Read/Write

The WD Black offers great mixed random I/O performance, but it is still slightly slower overall than the best drives from Samsung, and the Optane SSD is in an entirely different league.

Sustained 4kB Mixed Random Read/Write (Power Efficiency)
Power Efficiency in MB/s/WAverage Power in W

The WD Black's power efficiency on the mixed random I/O test is about the same as that of the Samsung 960 PRO, and close to the Optane SSD in spite of the vast difference in absolute performance level.


Mixed Sequential Performance

Our test of mixed sequential reads and writes differs from the mixed random I/O test by performing 128kB sequential accesses rather than 4kB accesses at random locations, and the sequential test is conducted at queue depth 1. The range of mixes tested is the same, and the timing and limits on data transfers are also the same as above.

Mixed 128kB Sequential Read/Write

The mixed sequential workload performance of the WD Black is surprisingly good, just barely behind the Optane SSD and far ahead of almost all flash-based SSDs.

Sustained 128kB Mixed Sequential Read/Write (Power Efficiency)
Power Efficiency in MB/s/WAverage Power in W

The WD Black draws about the same power as other SSDs during the mixed sequential test, and combined with the great performance that translates to a huge lead in power efficiency.


Power Management

Real-world client storage workloads leave SSDs idle most of the time, so the active power measurements presented earlier in this review only account for a small part of what determines a drive's suitability for battery-powered use. Especially under light use, the power efficiency of a SSD is determined mostly be how well it can save power when idle.

SATA SSDs are tested with SATA link power management disabled to measure their active idle power draw, and with it enabled for the deeper idle power consumption score and the idle wake-up latency test. Our testbed, like any ordinary desktop system, cannot trigger the deepest DevSleep idle state.

Idle power management for NVMe SSDs is far more complicated than for SATA SSDs. NVMe SSDs can support several different idle power states, and through the Autonomous Power State Transition (APST) feature the operating system can set a drive's policy for when to drop down to a lower power state. There is typically a tradeoff in that lower-power states take longer to enter and wake up from, so the choice about what power states to use may differ for desktop and notebooks.

We report two idle power measurements. Active idle is representative of a typical desktop, where none of the advanced PCIe link or NVMe power saving features are enabled and the drive is immediately ready to process new commands. The idle power consumption metric is measured with PCIe Active State Power Management L1.2 state enabled and NVMe APST enabled.

Active Idle Power Consumption (No LPM)Idle Power Consumption

Like most NVMe SSDs, the WD Black has a fairly high active idle power draw—the cost of keeping a PCIe 3 x4 link active. The active idle power is a bit higher than the previous WD Black SSD but is in line with drives from Samsung, Toshiba and Phison.

Enabling all the advanced PCIe and NVMe power management features doesn't have the desired effect on the WD Black SSD. The drops by almost half, but it should have dropped by at least an order of magnitude. The original WD Black SSD used aggressive power management whether or not the operating system requested it. The new WD Black seems to be unable to save much power when used on our desktop testbed, no matter what NVMe power states are requested. We will work with Western Digital to try to isolate the cause of this poor behavior. In the meantime, the WD Black is hardly the only NVMe drive where power management has problems out of the box, but Intel and Samsung have managed to produce drives that achieve very low idle power on our testbed with little or no tuning required.

Idle Wake-Up Latency

Since the WD Black is clearly unable to engage its full array of power management capabilities on our testbed, it is unsurprising to see that its wake-up latency is quite short. It is not the minimal ~15µs we usually observe from drives that aren't enabling any power savings at all, but ~230µs is still a very quick wake-up from sleep.


출처 - https://www.anandtech.com




























  1. RTX 4070 vs. RX 6800 XT tested in 12 games | 1080p vs. 1440p vs. 4K

    RTX 4070 vs. RX 6800 XT tested in 12 games | 1080p vs. 1440p vs. 4K  
    Date2023.07.18 CategoryGPU Reply1 Views851
    Read More
  2. 디아블로4 마을 프레임 벤치마크

    ㄴ MSI GeForce RTX 4090 SUPRIM X 24G ㄴ MSI GeForce RTX 4080 16GB GAMING X TRIO ㄴ MSI GeForce RTX 4070 Ti GAMING X TRIO WHITE 12G ㄴ MSI GeForce RTX 4070 GAMING X TRIO 12G ㄴ MSI GeForce RTX 4060 Ti GAMING X TRIO D6 8GB  
    Date2023.07.18 CategoryGPU Reply0 Views651
    Read More
  3. AMD 라데온 RX 6600 XT vs RTX 3060 Ti Test in 8 Games

    AMD 라데온 RX 6600 XT vs 엔비디아 지포스 RTX 3060 Ti Test in 8 Games / RX 6600 XT 8GB vs RTX 3060 Ti 8GB l 1440p
    Date2021.08.12 CategoryGPU Reply1 Views2158
    Read More
  4. AMD RX 6900 XT vs. GRFORCE RTX 3090 Test in 8 Games

    RADEON RX 6900 XT 16GB vs GeForce RTX 3090 24GB l 2160p Buy Ryzen 5 3600 at the best price on newegg.com - https://bit.ly/30Es4Qk​ Games : Battlefield V - 0:00​ Red Dead Redemption 2 - 0:58​ Assassin's Creed Valhalla (U...
    Date2021.04.21 CategoryGPU Reply1 Views1465
    Read More
  5. 지포스 RTX 3060 Ti vs. 라데온 RX 5700 XT

    지포스 RTX 3060 Ti vs. 라데온 RX 5700 XT GIGABYTE GeForce RTX 3060 Ti 8GB EAGLE ASUS ROG Strix AMD Radeon RX 5700XT 8GB intel Core i7-10700K MSI MAG Z490 TOMAHAWK Samsung 970 EVO Plus SSD 1TB Corsair RM850x White 80PLUS Gold 850W...
    Date2021.04.18 CategoryGPU Reply1 Views1321
    Read More
  6. AMD RADEON RX 6700 XT vs. NVIDIA GEFORCE RTX 3070

    AMD RADEON RX 6700 XT vs. NVIDIA GEFORCE RTX 3070 ZOTAC GeForce RTX 3070 Twin Edge 8GB ASRock Radeon RX 6700 XT Challenger 12GB intel Core i7-10700K MSI MAG Z490 TOMAHAWK Samsung 970 EVO Plus SSD 1TB Corsair RM850x White 80PLUS Gold ...
    Date2021.04.18 CategoryGPU Reply0 Views1269
    Read More
  7. AMD 라데온 RX 6800 XT 리뷰 - NVIDIA is in Trouble

    AMD가 엔비디아를 위협할 새로운 라데온 RX 6800 XT를 발표했다. Radeon RX 6800 XT Market Segment Analysis PriceShader UnitsROPsCore ClockBoost ClockMemory ClockGPUTransistorsMemoryRX Vega 64$4004096641247 MHz1546 MHz953 MHzVe...
    Date2020.11.28 CategoryGPU Reply0 Views1587
    Read More
  8. 엔비디아 지포스 RTX 3090 파운더스 에디션 리뷰: 절대 황제

    바로 하단 게시물 3080 리뷰에 이어 상위 모델인 3090의 리뷰입니다. 3090은 3080 대비 GPU 코어(FP32/INT32), 텐서 코어, RT 코어가 각각 10496 / 5248 / 328개로 증가하였으며 VRAM 도 384비트의 24GB로 증가하고 있습니다. ...
    Date2020.09.30 CategoryGPU Reply0 Views2276
    Read More
  9. 엔비디아 지포스 RTX 3080 파운더스 에디션 리뷰: 폭발적인 성능

    엔비디아가 마침내 새로운 30 시리즈를 출시했습니다. 새로운GA102 아키텍처는 삼성의 8N 프로세스를 사용하여 제조됩니다. TSMC의 N7 노드가 전반적으로 더 좋지만 Nvidia의 A100을 포함하여 비용이 더 많이 들고 현재 수요가 ...
    Date2020.09.30 CategoryGPU Reply3 Views1762
    Read More
  10. 라데온만 안되는 그것...유튜브 동영상 가속

    01:12 테스트준비 01:47 전원옵션 고성능 VS 균형조정 전력소비 차이 03:03 인텔 8700K UHD630 내장그래픽 유튜브 동영상가속 테스트 03:42 AMD 라데온 RX580 8G 유튜브 동영상가속 테스트 04:32 NVIDIA 지포스 GTX1060 6G 유튜브 동영상가속 테스트 05:...
    Date2019.09.21 CategoryGPU Reply4 Views1838
    Read More
  11. 현존 게이밍 지존 승부) 인텔 9600K vs 9700K vs 9900k 인 게임 테스트

    Games : Metro Exodus Battlefield 5 - 01:16 Assassin's Creed Odyssey - 02:30 HITMAN 2 - 03:43 Forza Horizon 4 - 05:27 Far Cry New Dawn - 06:31 Grand Theft Auto V - 07:40 The Witcher 3 - 09:16 System: Windows 10 Pro Intel i5 9600k 5.0Ghz...
    Date2019.08.04 CategoryGPU Reply1 Views1801
    Read More
  12. 라데온RX 5700 XT vs RTX 2070 SUPER vs RTX 2080 Test in 9 Games

    RADEON RX 5700 XT vs GeForce RTX 2070 SUPER vs RTX 2080 (i9 9900k) World of Warships - https://wgaffiliate.com/?a=2736&c=469... Games : Assassin's Creed Odyssey Battlefield 5 - 01:00 Kingdom Come Deliverance - 02:22 Metro Exodus - ...
    Date2019.07.21 CategoryGPU Reply0 Views7920
    Read More
  13. AMD 라데온RX 5700XT, RX 5700 벤치마크 (NAVI)

    AMD 라데온RX 5700XT AMD 라데온RX 5700 00 finds itself going up against GeForce RTX 2060. Radeon RX 5700 XT GeForce RTX 2060 Super Radeon RX 5700 GeForce RTX 2060 FE Architecture (GPU) RDNA (Navi 10) T...
    Date2019.07.13 CategoryGPU Reply0 Views1030
    Read More
  14. 엔비디아 지포스RTX 2070 Super & RTX 2060 Super 리뷰

    엔비디아가 AMD의 라데온 RX 5700 시리즈를 견제하기 위해 기존 RTX 시리즈에 "수퍼(SUPER)"로 명명한 신규 제품을 출시했다. NVIDIA GeForce RTX 20 Series LineupCardPriceGeForce RTX 2080 TiMSRP: $999 Street Price: $1249GeForce RTX 2080 Super...
    Date2019.07.07 CategoryGPU Reply2 Views1691
    Read More
  15. Nvidia 지포스GTX 1660 Ti 6GB 리뷰 : Turing Without The RTX

    EVGA GeForce GTX 1660 Ti XC Black Gaming GeForce RTX 2060 FE GeForce GTX 1060 FE GeForce GTX 1070 FE Architecture (GPU) Turing (TU116) Turing (TU106)Pascal (GP106)Pascal (GP104) CUDA Cores 1536 1920 1280 1920 Peak FP32 Compute 5.4...
    Date2019.02.26 CategoryGPU Reply2 Views2326
    Read More
  16. AMD 라데온7 16GB 리뷰, 절망의 라데온 (Radeon VII)

    AMD의 신형 라데온7이 마침내 발매 되었습니다. 라데온7은 GPU 측면으로 종합 16GB HBM2 메모리가 장착되어 있습니다. 라데온7의 GPGPU 연산 성능은 FP16과 FP32 모두 RTX 2080보다 떨어지며 FP64는 앞섭니다. ...
    Date2019.02.08 CategoryGPU Reply4 Views3245
    Read More
  17. 엔비디아 지포스RTX 2060 6G 파운더스 에디션 리뷰

    엔비디아의 차세대 "튜링 아키텍처" 적용, RTX 2080TI - 2080 - 2070에 이은 RTX 2060 파운더스 에디션 리뷰 RTX 2060은 1920 쿠다코어, 48ROPs, 베이스 클럭 1365MHz, 부스트 클럭 1680MHz, 메모리 클럭은 GDDR6 14Gbps, 192비트 메...
    Date2019.01.13 CategoryGPU Reply3 Views3323
    Read More
  18. AMD RADEON RX 590 벤치마크 - RX 580 오버클럭 버전

    AMD가 새로 발표한 라데온 RX 590 성능 벤치마크 라데온 VS 지포스 스펙 비교표 Test SystemTest System - VGA Rev. 2018.2Processor:Intel Core i7-8700K @ 4.8 GHz (Coffee Lake, 12 MB Cache)Moth...
    Date2018.11.17 CategoryGPU Reply2 Views9640
    Read More
  19. Battlefield V Benchmark Performance Analysis (GPU 벤치마크)

    해외 www.techpowerup.com 사이트에서 진행한 Battlefield V GPU 벤치마크. 현행 GPU 성능 분석 참고 자료 Test SystemTest SystemProcessor:Intel Core i7-8700K @ 4.8 GHz (Coffee Lake, 12 MB Cache)Motherboard:ASUS Maximus X Code Intel ...
    Date2018.11.11 CategoryGPU Reply0 Views2281
    Read More
  20. NVIDIA GeForce RTX 2080 Ti, RTX 2080 성능 벤치마크 (탐스 하드웨어)

    탐스 하드웨어에서 진행한 NVIDIA GeForce RTX 2080 Ti, RTX 2080 파운더스 에디션 벤치마크입니다. 출처  - https://www.tomshardware.com 지포스RTX 2080 Ti, RTX 2080의 성...
    Date2018.09.24 CategoryGPU Reply4 Views2477
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 Next
/ 11